

Phrase-level Temporal Relationship Mining for Temporal Sentence Localization

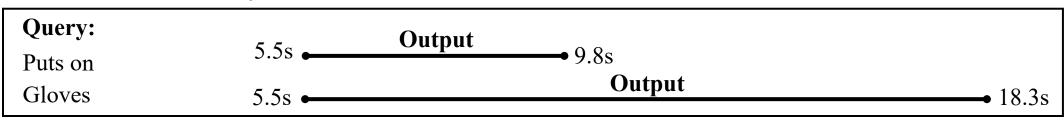
Minghang Zheng, Sizhe Li, Qingchao Chen, Yuxin Peng, Yang Liu Peking University, Beijing Institute for General Artificial Intelligence

Task: Temporal Sentence Localization

Inputs: Video + Sentence query **Outputs:** Target video clip (start and end timestamps)

Video:Image: State of the state of t	
A man puts on gloves and then clean the snow $5.5s \bullet$	Output • 15.1s

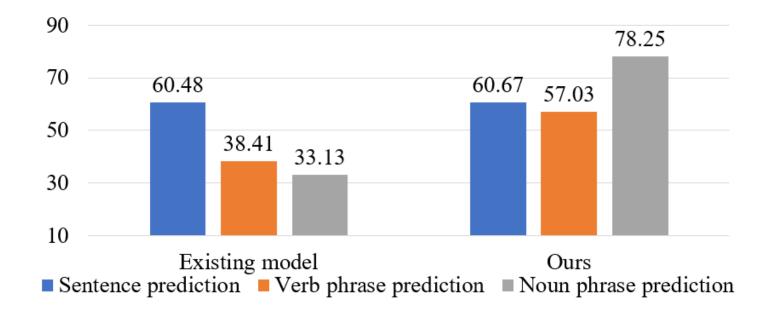
Phrase-level Query:



Motivation

Observations: Existing work can not deal with the **phrase-level** query well **Problems:**

- Insufficient understandings of relationship between **simple visual and language concepts**
- Questioned model interpretability and robustness



Motivation

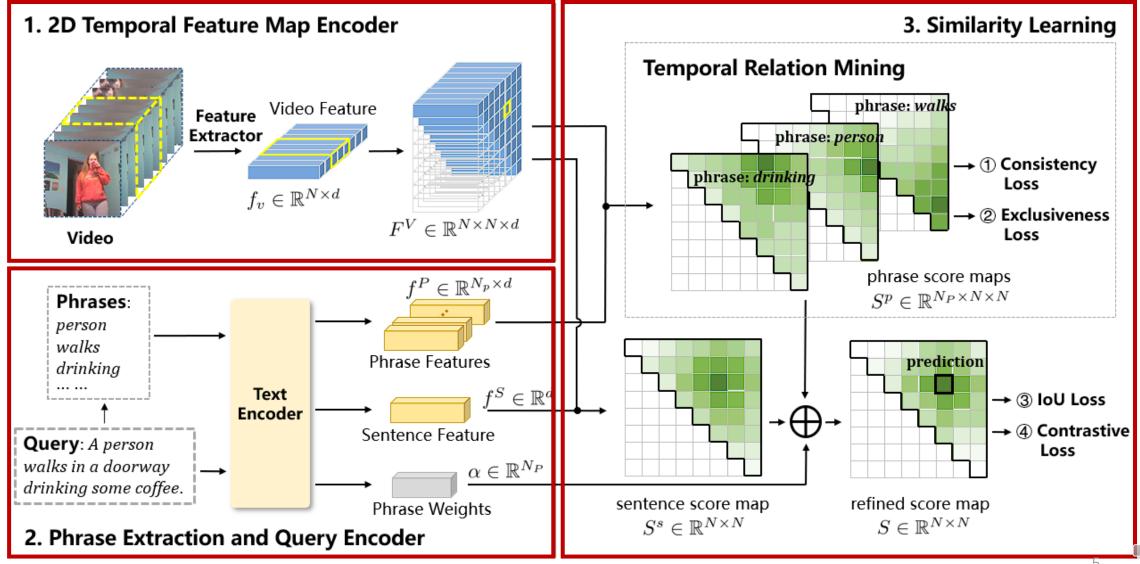
Difficulty: No phrase-level annotation

Solution: Phrase-level Temporal Relationship Mining (TRM)

- Consider phrase-level prediction
- Mining **temporal relationship** between phrase and sentence level prediction
- Two principles: Consistency & Exclusiveness

Video:		
Query: A man puts on g	loves and then clean the snow	
	•	•
Query: Puts on		
	••	
Query: Gloves		
		•
Query: Clean		
	•	•
Query: Snow		
		•
Exclusiveness	Consistency	Exclusiveness

Overall Framework



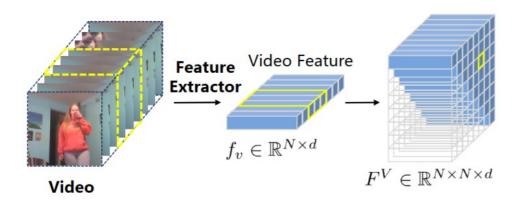
1. 2D Temporal Feature Map Encoder

Aims: Extract video features and generating 2D proposal feature map

Visual Feature Extraction

- Visual encoder: C3D¹ or VGG²
- Generate 2D feature map by Conv: F_{ij}^V : video candidate starting from the ith clip and ending with the j-th clip

2D Temporal Feature Map Encoder



¹Tran, et al. Learning Spatiotemporal Features with 3D Convolutional Networks. ICCV, 2015. ²Simonyan, et al. Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR, 2015

2. Phrase Extraction and Query Encoder

AAAI Association for the Advancement of Artificial Intelligence

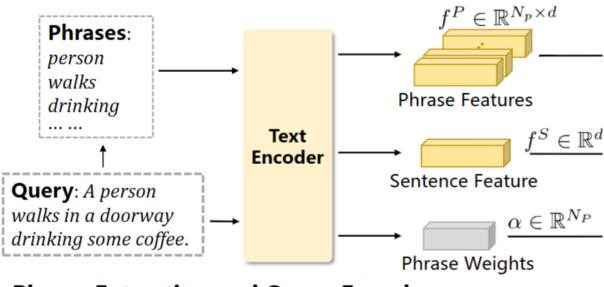
Aims: Extract fine-grained phrases and extract text features

Phrase Extraction

• From pretrained SRLBERT¹ N_p phrases: $[p_1, p_2, ..., p_{N_p}]$

Query Encoder

- Text encoder: DistilBERT² sentence features: $f^{S} \in \mathbb{R}^{d}$ phrase features: $f^{P} \in \mathbb{R}^{N_{p} \times d}$
- Predict phrase weights by Attention $\alpha \in \mathbb{R}^{N_p}$: importance of each phrase



Phrase Extraction and Query Encoder

¹Shi, et al. Simple bert models for relation extraction and semantic role labeling. arXiv, 2019. ²Sanh, et al. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv, 2019

3.1 Similarity Learning

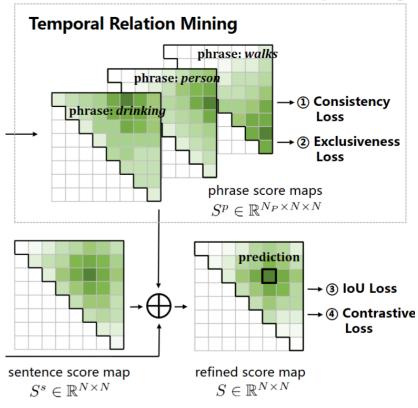
Aims: Learn semantic relevance of sentence/phrase with each proposal

Score Map Generation

• Calculate cosine similarity Sentence score map: $S^s = F^{VT} f^s$ Phrase Score map: $S_i^p = F^{VT} f_i^p$

Temporal Relation Mining

- Improve the quality of phrase score map
- Consistency & Exclusiveness

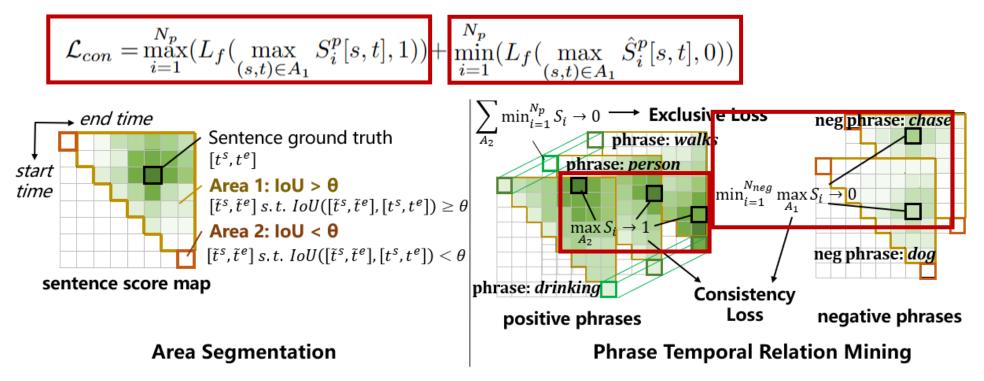


Similarity Learning

3.2 Temporal Relation Mining

Consistency

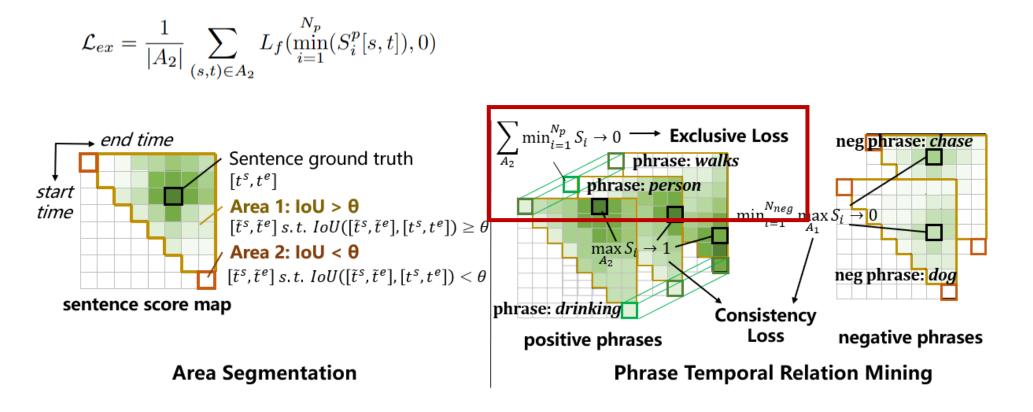
- **Paired sentence-video:** phrase-level prediction should **share** a period with the annotated sentence-level ground truth.
- Unpaired sentence-video: at least one phrase-level prediction does not share a period with the annotated ground truth.



3.3 Temporal Relation Mining

Exclusiveness

• Each frame **outside** the ground truth is **not contained** in **at least one** phrase-level prediction



3.4 Similarity Learning

Aims: Learn semantic relevance of sentence/phrase with each proposal

Sentence Score Map Refinement

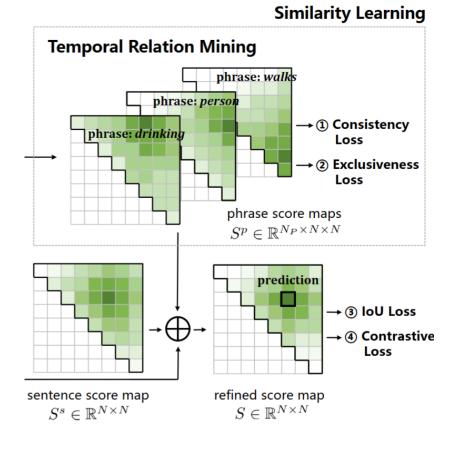
• phrase-level score maps provide finegrained information for sentence

$$S = S^s + \sum \alpha_i S_i^p$$
$$\mathcal{L}_{iou} = -\frac{1}{C} \sum_{i=1}^C (y_i \log S_i + (1 - y_i) \log(1 - S_i)),$$

Sentence-level Contrastive Learning

• Use contrastive learning to provide more supervised signals

$$\mathcal{L}_{cont} = -(\sum_{s \in \mathbb{S}} \log p(v_s | s) + \sum_{v \in \mathbb{V}} \log p(s_v | v))$$



Experiments

Datasets

- ActivityNet Captions
- Charades-STA

Metrics

- Recall, IoU=m
- mIoU

Evaluation for phrase

- Verb annotation from Temporal Action Localization task
- Action names as phrase queries

Query: A man in a red tank top is crossing the monkey bars.

(a) ActivityNet Captions

Query: Person runs to a table.

(b) Charades-STA

Charades-STA

Results

- Best performance on phrase prediction
- Phrase information can help **sentence prediction**

Method	feature	sentence prediction				phrase prediction				
	icature	IoU=0.3	IoU=0.5	IoU=0.7	mIoU	IoU=0.3	IoU=0.5	IoU=0.7	mIoU	
SAP (Chen and Jiang 2019)			27.42	13.36						
MAN (Zhang et al. 2019)			41.24	20.54						
LGI (Mun, Cho, and Han 2020)		57.20	40.70	20.13	38.75					
2D-TAN (Zhang et al. 2020b)		57.31	42.8	23.25	_	45.15	<u>23.22</u>	10.14		
FVMR (Gao and Xu 2021)		—	42.36	24.14						
DRN (Zeng et al. 2020)	VGG		42.90	23.68	—					
SSCS (Ding et al. 2021)			43.15	25.54						
CBLN (Liu et al. 2021)		—	43.67	24.44						
CPN (Zhao et al. 2021)		64.41	46.08	25.06	43.90					
MMN (Wang et al. 2021b)		60.48	<u>47.45</u>	<u>27.15</u>	_	38.41	22.19	10.1		
PLPNet (Li et al. 2022b)		57.82	41.88	20.56	39.12	<u>46.24</u>	22.94	7.69	<u>28.46</u>	
TRM (ours)	VGG	<u>60.67</u>	47.77	28.01	<u>42.77</u>	57.03	33.69	11.86	35.82	

*Experiments on ActivityNet Captions dataset can be found in the paper

13

Compositional Generalization

ActivityNet-CG¹ dataset

- Novel-Composition: unseen combination of seen phrases
- Novel-Word: unseen word

Results

- Best performance on all test splits
- Better generalization

	Method	Test-Trivial			Novel-Composition			Novel-Word		
	Metiloa	IoU=0.5	IoU=0.7	mIoU	IoU=0.5	IoU=0.7	mIoU	IoU=0.5	IoU=0.7	mIoU
Weakly-supervised	WSLL (Duan et al. 2018)	11.03	4.14	15.07	2.89	0.76	7.65	3.09	1.13	7.10
RL-based	TSP-PRL (Wu et al. 2020)	34.27	18.80	37.05	14.74	1.43	12.61	18.05	3.15	14.34
	LGI (Mun, Cho, and Han 2020)	43.56	23.29	41.37	23.21	9.02	27.86	23.10	9.03	26.95
Proposal-free	VLSNet (Zhang et al. 2020a)	39.27	23.12	42.51	20.21	9.18	29.07	21.68	9.94	29.58
-	VISA (Li et al. 2022a)	47.13	<u>29.64</u>	<u>44.02</u>	<u>31.51</u>	<u>16.73</u>	35.85	<u>30.14</u>	<u>15.90</u>	<u>35.13</u>
	TMN (Liu et al. 2018)	16.82	7.01	17.13	8.74	4.39	10.08	9.93	5.12	11.38
Proposal-based	2D-TAN (Zhang et al. 2020b)	44.50	26.03	42.12	22.80	9.95	28.49	23.86	10.37	28.88
	TRM (Ours)	55.22	35.06	51.85	33.80	16.86	<u>35.80</u>	35.49	17.68	37.50

¹Li, et al. Compositional Temporal Grounding with Structured Variational Cross-Graph Correspondence Learning. CVPR, 2022.

Ablations on Charades-STA

Results

- Introducing phrase without mining relationship has limited improvement
- **Consistency** loss can greatly improve the performance
- Training with **only** exclusiveness loss has a **negative** impact
- **Consistency** loss and **exclusiveness** loss **together** can further improve the performance of **both sentences and phrase**

Method			Sentence prediction			Verb	phrase pred	iction	Noun phrase prediction			
Phrase	Consistency	Exclusiveness	IoU=0.3	IoU=0.5	IoU=0.7	IoU=0.3	IoU=0.5	IoU=0.7	IoU=0.3	IoU=0.5	IoU=0.7	
×	×	×	60.48	47.45	27.15	38.41	22.19	10.01	33.13	8.17	3.15	
~	×	×	59.84	46.65	26.99	41.13	22.63	10.60	35.41	7.36	2.68	
✓	✓	×	60.22	46.56	27.31	56.69	30.85	10.85	71.12	51.67	8.57	
✓	×	✓	60.13	45.89	27.80	38.90	22.11	10.46	36.88	8.63	3.01	
~	✓	~	60.67	47.77	28.01	57.03	33.69	11.86	78.25	57.10	10.17	

Qualitative Results on Charades-STA

Observation

- Understands phrases: 'drinking', 'some coffee', and 'walk
- Satisfy constraints of consistency and exclusiveness.

Query: A person walks in a doorway drinking some coffee.

Sentence ground truth: 0.2s	9.8s
Sentence: 0.0s	9.6s
Phrase: drinking	
5.74s	17.22s
Phrase: some coffee 5.74s	19.13s
Phrase: walks 0.0s	9.6s

Conclusion

Phrase-level Temporal Relationship Mining (TRM)

- Consider **phrase-level prediction** in training **without** phrase-level annotation
- Propose the **consistency** and **exclusiveness** constraints
- Performance improved on **both** phrase and sentence prediction
- Better interpretability, and generalization performance

Thank you!

