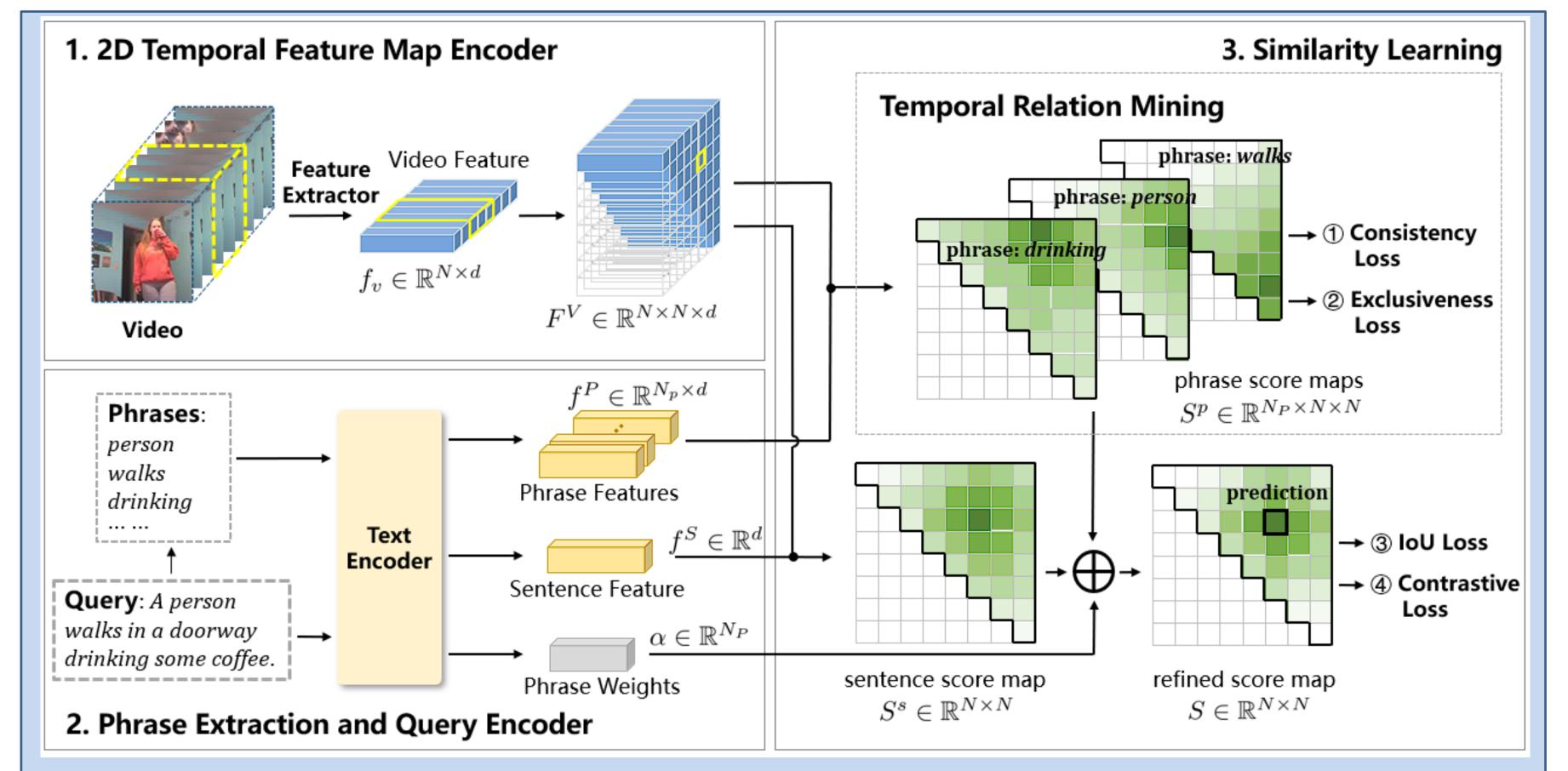


Phrase-level Temporal Relationship Mining for Temporal Sentence Localization

Minghang Zheng¹, Sizhe Li¹, Qingchao Chen¹, Yuxin Peng¹, Yang Liu^{1,2}

¹Peking University ²Beijing Institute for General Artificial Intelligence



Introduction

Video:							
Query: A man puts on gloves and then clean the snow							
Query: Puts on							
Query: Gloves							
Query: Clean							
Query: Snow							
Exclusiveness	Consistency	Exclusiveness					

- > Task: Temporal sentence grounding
 - Inputs: Video + Sentence query
 - Outputs: Target video clip (start and end timestamps)
- Observations: Existing work can not deal with the phrase-level
- > Problems:
 - Insufficient understandings of relationship between simple visual and language concepts
 - Questioned model interpretability and robustness
- > Difficulty: No phrase-level annotation
- > Solution: Phrase-level Temporal Relationship Mining (TRM)
 - Consider phrase-level prediction
 - Mining temporal relationship between phrase and sentence
 - Two principles: Consistency & Exclusiveness

Method

> 2D Temporal Feature Map Encoder

- Generate 2D visual feature map F_{ij}^V
- Phrase Extraction and Query Encoder
 - Extract phrase form pretrained SRLBERT
 - Encode sentence feature f^S and phrase feature f^P

Similarity Learning

- Calculate sentence score map $S^s = F^{VT} f^s$ and phrase score map $S_i^p = F^{VT} f_i^p$
- Consistency: Phrase-level prediction should share a period with the annotated sentence-level ground truth
- Exclusiveness: Each frame outside the ground truth is not contained in at least one phrase-level prediction
- Sentence Score Map Refinement: phrase-level score maps provide finegrained information for sentence

$$S = S^s + \sum \alpha_i S_i^p$$

Experiments

Charades-STA									
Method	feature	sentence prediction			phrase prediction				
		IoU=0.3	IoU=0.5	IoU=0.7	mIoU	IoU=0.3	IoU=0.5	IoU=0.7	mIoU
SAP (Chen and Jiang 2019)		<u> </u>	27.42	13.36	_				
MAN (Zhang et al. 2019)		_	41.24	20.54	_				
LGI (Mun, Cho, and Han 2020)		57.20	40.70	20.13	38.75				
2D-TAN (Zhang et al. 2020b)		57.31	42.8	23.25	_	45.15	23.22	<u>10.14</u>	_
FVMR (Gao and Xu 2021)		_	42.36	24.14	_				
DRN (Zeng et al. 2020)	VGG		42.90	23.68	_				
SSCS (Ding et al. 2021)		_	43.15	25.54	_				
CBLN (Liu et al. 2021)			43.67	24.44	_				
CPN (Zhao et al. 2021)		64.41	46.08	25.06	43.90				
MMN (Wang et al. 2021b)		60.48	<u>47.45</u>	<u>27.15</u>	_	38.41	22.19	10.1	_
PLPNet (Li et al. 2022b)		57.82	41.88	20.56	39.12	<u>46.24</u>	22.94	7.69	<u>28.46</u>
TRM (ours)	VGG	60.67	47.77	28.01	42.77	57.03	33.69	11.86	35.82

Ablation Study

Method Test-Trivial IoU=0.5 IoU=0.7 mIoU Novel-Word IoU=0.5 IoU=0.7 mIoU IoU=0.5 IoU=0.7 mIoU Weakly-supervised WSLL (Duan et al. 2018) 11.03 4.14 15.07 | 2.89 0.76 7.65 | 3.09 | 1.13 | 7.10 RL-based TSP-PRL (Wu et al. 2020) 34.27 | 18.80 | 37.05 | 14.74 | 1.43 | 12.61 | 18.05 | 3.15 | 14.34 Proposal-free LGI (Mun, Cho, and Han 2020) VLSNet (Zhang et al. 2020a) | 43.56 | 23.29 | 41.37 | 23.21 | 9.02 | 27.86 | 23.10 | 9.03 | 26.95 | 27.86 | 23.10 | 20.21 | 9.18 | 29.07 | 21.68 | 9.94 | 29.58

Effectiveness of Proposed Modules

Method			Sen	tence predic	ction	Verb phrase prediction			
Phrase	Consistency	Exclusiveness	IoU=0.3	IoU=0.5	IoU=0.7	IoU=0.3	IoU=0.5	IoU=0.7	
×	×	×	60.48	47.45	27.15	38.41	22.19	10.01	
✓	×	×	59.84	46.65	26.99	41.13	22.63	10.60	
✓	✓	×	60.22	46.56	27.31	56.69	30.85	10.85	
✓	×	✓	60.13	45.89	27.80	38.90	22.11	10.46	
	✓	✓	60.67	47.77	28.01	57.03	33.69	11.86	

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (61925201, 62132001, U21B2025), Zhejiang Lab (NO. 2022NB0AB05), the National Key R&D Program of China (2021YFF0901502) and CAAl-Huawei MindSpore Open Fund.

