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Abstract. Video temporal grounding aims to identify video segments
within untrimmed videos that are most relevant to a given natural lan-
guage query. Existing video temporal localization models rely on specific
datasets for training, with high data collection costs, but exhibit poor
generalization capability under the across-dataset and out-of-distribution
(OOD) settings. In this paper, we propose a Training-Free Video Temporal
Grounding (TFVTG) approach that leverages the ability of pre-trained
large models. A naive baseline is to enumerate proposals in the video and
use the pre-trained visual language models (VLMs) to select the best
proposal according to the vision-language alignment. However, most ex-
isting VLMs are trained on image-text pairs or trimmed video clip-text
pairs, making it struggle to (1) grasp the relationship and distinguish
the temporal boundaries of multiple events within the same video; (2)
comprehend and be sensitive to the dynamic transition of events (the
transition from one event to another) in the video. To address these
issues, firstly, we propose leveraging large language models (LLMs) to
analyze multiple sub-events contained in the query text and analyze the
temporal order and relationships between these events. Secondly, we split
a sub-event into dynamic transition and static status parts and propose
the dynamic and static scoring functions using VLMs to better evaluate
the relevance between the event and the description. Finally, for each sub-
event description provided by LLMs, we use VLMs to locate the top-k
proposals that are most relevant to the description and leverage the or-
der and relationships between sub-events provided by LLMs to filter and
integrate these proposals. Our method achieves the best performance on
zero-shot video temporal grounding on Charades-STA and ActivityNet
Captions datasets without any training and demonstrates better general-
ization capabilities in cross-dataset and OOD settings. Code is available
at https://github.com/minghangz/TFVTG.
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Fig. 1: (a) Evaluation results of existing methods and our method under the IID and
OOD setting on the Charades-STA dataset. (b) Evaluation results of the naive baseline
on the ActivityNet Datasets when the query describes single or multiple events. (c) The
query-frame similarity obtained from the BLIP-2 Q-Former. The naive baseline based
on BLIP-2 tends to predict the static parts of the video and ignores the dynamic
transitions.

1 Introduction

Video temporal grounding [7] aims to localize the most semantically relevant
segment in untrimmed videos according to free-form natural language queries.
It has broad application potential in video surveillance [4], video summariza-
tion [29], and other fields. Existing video temporal grounding methods [7,11,14,
27, 40, 56–58, 62, 63] mainly train models on manually annotated data to under-
stand the alignment between video segments and natural language queries. These
methods have achieved remarkable improvements recently on specific datasets,
such as ActivityNet Captions [16] and Charades-STA [7]. However, collecting
high-quality video temporal grounding datasets is time-consuming and labor-
intensive, which hinders the large-scale real-world application of these methods.
In addition, they heavily rely on the distribution of the training dataset and the
performance degrades significantly in out-of-distribution (OOD) or cross-dataset
settings according to previous research [3, 19, 50, 53]. As shown in Figure 1 (a),
we report the OOD performance 4 on the Charades-STA dataset of recent fully
supervised method MMN [44], weakly supervised method CPL [61], and unsuper-
vised method PSVL [33]. As we can see, their performance all has a significant
drop. This is because these models are trained on small-scale video temporal
grounding datasets that exhibit certain biases, leading to poor generalization of
the models. Therefore, we aim to design a training-free video temporal grounding
approach that does not rely on specific video temporal grounding datasets, so
that it can be better generalized to real application scenarios.

Recently, large-scale pre-trained models [1,21,26,34,36,42,43,55] have shown
strong generalization ability in zero-shot retrieval [28, 52], VQA [9, 31], detec-
tion [17, 18, 47] et al. This inspires us to transfer the powerful generalization
ability of them to video temporal grounding tasks. A naive baseline is to enu-
merate proposals in the video and use the pre-trained visual language models
4 We follow [50] and plot the performance under the OOD-1 setting in the figure.
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(VLMs) [21, 34, 42, 43] to assess the alignment between these proposals and the
query and select the proposal with the highest score. However, this approach
has the following drawbacks. Firstly, it can be challenging for VLMs to under-
stand the temporal boundaries of multiple events in untrimmed video. Most of the
existing image-text or video-text pre-trained VLMs are trained to align single
images (e.g. CLIP [34], BLIP [21]) or trimmed video clips (e.g. InterVideo [43])
with texts. However, in the video temporal grounding, the model needs to un-
derstand multiple sequential events and their temporal relationships, such as
‘She sprays it with a spray bottle and continues brushing her hair’. The skill
is seldom emphasized in the image or trimmed video pretraining, and as shown
in Figure 1(b), the naive baseline has a poorer performance when the query de-
scribes multiple events. Secondly, we find that directly selecting the most relevant
proposal using VLMs often leads to overlooking the dynamic transitions at the
beginning of an event. As shown in Figure 1(c), we show the similarity between
video frames and the query text using the BLIP-2 Q-Former [20]. It can be found
that in the naive baseline’s prediction, the beginning of the event where a person
gradually picks up the picture and approaches the wall is ignored. We think this
is because these VLMs are trained directly by visual-textual contrastive learn-
ing. In such a training paradigm, the model’s primary objective is to associate
the most discriminative visual cues with their corresponding text descriptions,
rather than emphasizing the need to focus on dynamic transitions and ensure
the completeness of localized event boundaries.

To address the above problems, we propose to combine the ability of large lan-
guage models (LLMs) [1,26,36] to understand and reason about queries and the
ability of visual language models (VLMs) to align vision and text in a training-
free manner. Specifically, for the challenge of understanding videos and queries
that contain multiple events, we propose to prompt the LLMs to analyze the
multiple events that may be contained in the query and give a text description
of each single event as sub-queries, the order in which each event occurs, and
the relationship between events (sequential or simultaneous). For the sub-query
of each single event, we can use the VLMs to locate its possible occurrence in
the video. To better use the VLMs to locate the video clip corresponding to the
single event query and solve the problem of ignoring the dynamic transitions
in the video while enhancing localization completeness, we propose to consider
both dynamic transition and static status after transition explicitly when mea-
suring the similarity between the proposal and the text query. For example in
Figure 1(c), for the query ‘a person put a picture on the wall’, the dynamic
transition part is where the person gradually raises the picture and approaches
the wall, while the static status part is where the person has already hung the
picture on the wall and is looking at the camera. A good proposal should begin
with a dynamic segment, exhibiting a notable increase in video-text similarity
and followed by a static post-status segment characterized by a high average
video-text similarity within the static segment, while displaying a low average
similarity outside of it. To evaluate each proposal, we compute a matching score
by summing the dynamic score, which measures the rate of similarity change
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within its dynamic segment, and the static score, which evaluates the compara-
tive similarity within and outside its static post-status segment. Then, we select
the top proposals with the highest matching scores as the localization results of
the single event description. Finally, the localization results of each single event
are combined with the LLM’s judgment of the relationship and order of events
to filter and integrate the final predictions.

Our contributions are summarized as follows. (1) We propose a training-
free pipeline for video temporal grounding (TFVTG) using pre-trained large
language models (LLMs) and vison-language models (VLMs). We use the LLMs
to split the original query into sub-events and reason the temporal order and
relationship between them, use VLMs to localize each sub-event, and filter and
integrate the localization results based on the temporal order and relationships.
(2) To help VLM better understand the dynamic transitions in the video, we
divide the events into dynamic and static parts and model them separately.
For the dynamic part, measures the rate of similarity change, and for the static
part, we measure the comparative similarity within and outside. (3) Our method
achieves the best performance on zero-shot video temporal grounding on both
the Charades-STA [7] and ActivityNet Captions [16] datasets and has a greater
advantage in cross-dataset and OOD settings.

2 Related Work

2.1 Video Temporal Localization

Fully supervised video temporal grounding methods [5, 7, 11, 14, 25, 27, 32, 44,
50, 57] typically train models using manually annotated queries and start and
end timestamps. For example, MMN [44] trains models to distinguish matched
and unmatched video-sentence pairs collected from within videos and across
videos; VTimeLLM [10] is the first to fine-tune large language models using
video temporal grounding data. However, fully supervised methods are often in-
fluenced by annotation bias, leading to poor generalization. Weakly supervised
learning [13, 60, 61] and unsupervised learning [23, 33, 51, 59] are often used to
mitigate the high dependence on human annotation. For instance, PSVL [33]
and SPL [59] train models by generating pseudo-labels within videos. Neverthe-
less, even without using manually annotated data, biases present in the training
videos can still affect the generalization of these methods. Therefore, in this work,
we focus on training-free video temporal grounding, aiming for stronger gener-
alization and applicability in real-world scenarios. Recently, Luo et al. [28] and
VTG-GPT [46] made the first attempt to training-free video temporal ground-
ing. Luo et al. measure the similarity between video proposals and the text query
using VLM while VTG-GPT measures the similarity between the video frame
captions and the text query using LLM. They then make a prediction based
on the similarity. However, they overlooked the order and relationship between
the possible multiple events within the query, as well as the issue of VLM’s
insensitivity to dynamic transitions in the video due to their training scheme.
In contrast, we propose to infer multiple sub-events contained in the query and
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their order and relationship through LLM, model dynamic changes in the video
explicitly to assist VLM in better localizing each sub-event, and filter and inte-
grate the localization results based on the order and relationship between events
inferred by LLM.

2.2 Bias in Video Temporal Localization Datasets

The mainstream video temporal grounding datasets [7,16] suffer from certain bi-
ases, which affect the generalization ability of models trained on these datasets.
Many studies [3, 19, 50, 53] have investigated biases in video temporal ground-
ing datasets. For example, [50, 53] study biases in the location of target seg-
ments. When there are significant changes in the distribution of locations, ex-
isting methods exhibit noticeable performance degradation. [19] explores biases
in query texts and proposes the ActivityNet-CG and Charades-CG datasets to
evaluate the generalization ability of existing methods in the novel combinations
of phrases and novel words. [3] studies the cross-dataset generalization ability
of existing models and finds that models trained on specific datasets perform
poorly when testing on another dataset. Some works [3, 19, 49, 50] have focused
on improving model generalization to specific biases. However, they are difficult
to generalize to address various types of biases in video temporal grounding.
Therefore, we attempt to study training-free video temporal grounding to over-
come reliance on specific datasets and achieve better generalization across various
scenarios.

2.3 Large-scale Pretrained Models in Video Understanding

In recent years, with the development of large-scale corpus [2, 35], model archi-
tecture [37,38], and computational resources, large language models (LLMs) [1,
26, 36] have achieved rapid development, demonstrating powerful capabilities
in text generation, chat, problem-solving, reasoning, et al. On the other hand,
visual language models (VLMs) [21,34,43,48] have also shown strong generaliza-
tion abilities in tasks such as multimodal alignment and retrieval. Some existing
methods attempt to combine VLMs with LLMs in video tasks. For example,
ChatVideo [41] utilizes pre-trained models such as trajectory detection, video
captioning, and speech recognition to convert videos into text, which serves as
input to LLMs for video understanding. Video-LLaMA [55], and VTimeLLM [10]
project video features into the token embedding space of LLMs through fine-
tuning to enable LLMs to understand videos. However, these methods perform
poorly on video temporal grounding tasks as shown in Table 1. Even VTimeLLM,
which specifically fine-tunes LLM using video temporal grounding data, still ex-
hibits a significant performance gap compared to the traditional video temporal
grounding method. We think that this may be because fine-tuning VLMs and
LLMs on video temporal grounding datasets degrades their generalization, and
encoding videos solely as input token sequences for LLMs makes it difficult for
LLMs to accurately understand the time boundaries of various events. There-
fore, we propose a training-free pipeline to combine the capabilities of LLMs and
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VLMs for video temporal grounding tasks. We leverage the strengths of both:
using LLMs to reason the sub-events contained in queries, their occurrence order,
and relationships, using VLMs to measure the vision-text similarity and local-
ize each sub-event, and integrating the final predictions based on the inferred
sub-event order and relationships from LLM.

Query: She sprays it with a 
spray bottle and continues 
brushing her hair.

Prompts: you are a video 
temporal localization 
assistant that …

Sub-events (by time order):
1. A person is spraying an 

object with a spray bottle.
2. A person is brushing her hair.

Relationship: sequentially

LLM
+

Video:

VLM

Sub-event 1: 
A person is 
spraying an 
object with a 
spray bottle.

Similarity

Time

𝑃𝑃12 𝑃𝑃22

Dynamic
StaticSub-event 2: 

A person is 
brushing her 
hair.

Similarity

Time

𝑃𝑃11
Predictions:

𝑃𝑃11 [39s, 50s]

𝑃𝑃12 [0s, 39s]
𝑃𝑃22 [50s, 184s]

Possible Combinations
(𝑃𝑃12, 𝑃𝑃11), (𝑃𝑃11, 𝑃𝑃22)

Order constraint: 
sub-event 1 happens 
before sub-event 2

Relation constraint: 
sub-events happen 
sequentially

(𝑃𝑃11, 𝑃𝑃22)

Final predictions:
𝑃𝑃 =  𝑃𝑃11 ∪ 𝑃𝑃22 =[39s,184s]

LLM Prompting VLM Localizer Filtering & Integration

Fig. 2: The pipeline of the proposed method. Firstly, the LLM prompting leverages
the large language model (LLM) to analyze sub-events contained in the query and
reason the order and the temporal relationship of these sub-events. Then, the VLM
localizer uses the vision language models to localize the sub-event in the video. The
VLM localizer calculates the similarity between the video frames and the sub-event
descriptions, enumerates event proposals in the video, and explicitly considers both
dynamic transition and static status post-transition when measuring the similarity
between the proposal and the text query, thus selecting proposals as the localization
results. Finally, we filter and integrate the results of the VLM localizer based on the
order and relationship of sub-events inferred by LLM to make the final prediction.

3 Method

The overview of our model design is illustrated in Figure 2. Our method consists
of three parts: Firstly, since the query may describe multiple events that hap-
pened sequentially or simultaneously in the video, we propose the LLM prompt-
ing to leverage LLM for analyzing sub-events contained in the query and reason
the order and the temporal relationship of these sub-events. Then, we propose
the VLM localizer that uses the VLM to localize the sub-event in the video. The
VLM localizer first calculates the similarity between the video frames and the
sub-event descriptions. To solve the problem that VLMs are not sensitive enough
to the dynamic transitions in the video, we propose explicitly considering both
dynamic transitions and static states following these transitions when evaluat-
ing the similarity between the proposal and the text query. A good proposal
should commence with a dynamic segment showing a significant rise in video-
text similarity, followed by a static post-transition segment characterized by a
high average video-text similarity within the static segment, while maintaining
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a low average similarity outside of it. To assess each proposal, we enumerate
the plausible dynamic and static segments of every event proposal and calculate
a matching score by aggregating the dynamic and static scores. The dynamic
score measures the rate of similarity change within its dynamic segment, and the
static score evaluates the comparative similarity within and outside its static
post-status segment. The VLM localizer returns the top-k proposals with the
highest sum of dynamic and static scores as the localization results. Finally,
we filter and integrate the results of the VLM localizer based on the order and
relationship of sub-events inferred by LLM to make the final prediction.

3.1 LLM Prompting

The large language model (LLM) demonstrates powerful capabilities in instruc-
tion following, context understanding, and reasoning. Therefore, we propose
to prompt LLM to analyze query texts, identifying multiple potential events
therein, and analyzing the order and relationship of these events. Specifically,
we request the large language model to provide the following information:

– Reasoning: Analyze the user’s query and infer the sub-events it may contain.
– Order of sub-events: Provide each sub-events in chronological order.
– Relationships between sub-events: Consider three types of relationships: Sin-

gle event, simultaneously (i.e. the sub-events occur simultaneously), and se-
quentially (i.e. the sub-events occur sequentially).

– Textual descriptions: Generate text descriptions for each sub-event.

The complete prompt will be provided in the supplementary materials.

3.2 Grounding with Vison Language Model

Inspired by the powerful multimodal alignment capabilities of VLM, we propose
to use VLM as a localizer to locate each sub-event in the video.

Specifically, we choose BLIP-2 Q-Former [20] following [22,55] as the VLM lo-
calizer. For a sub-event description c and each video frame v1, ..., vN , we use VLM
to extract their text features f c ∈ RD and vision features F v = [fv

1 , ..., f
v
N ] ∈

RN×D, where N is the number of video frames and D is the feature dimension.
As the text and vision space are well aligned, we can directly use the cosine sim-
ilarity of the text and vision features to measure the relevance of the sub-event
description and the video frame:

S =
f cF v⊺

∥f c∥∥F v∥
∈ RN (1)

We find that directly enumerating proposals within the video and selecting
the proposal with the highest average similarity often leads the model to only
predict static status in the event while ignoring the dynamic transition at the
beginning of an event. In 56.1% of the testing data in the Charades-STA dataset,
the naive baseline predicts a start timestamp that is after the ground truth start
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timestamp. For example, for the query "a person sits down", the model tends to
predict segments where the person is already seated on the chair rather than the
process of the person gradually from standing up to sitting down. A good event
should commence with a dynamic segment showing a significant rise in video-
text similarity, followed by a static post-transition segment characterized by a
high average video-text similarity within the static segment, while maintaining
a low average similarity outside of it. To assess each proposal, we enumerate
the plausible dynamic and static segments of every event proposal and calculate
a matching score by aggregating the dynamic and static scores. The dynamic
score measures the rate of similarity change within its dynamic segment, and
the static score evaluates the comparative similarity within and outside its static
post-status segment:

Dynamic Scoring Considering the continuity of the video, in the dynamic part
of the target segment, the video content transitions from another event to the
target event described by the query, so the relevance between the video frames
and the query should quickly increase. Our dynamic scoring aims to provide
quantitative scores for segments where the relevance between the video and
the query increases rapidly. Firstly, to eliminate the influence of video jitter, we
apply a Gaussian filter to the similarity S: Ŝ = G(S), where G(·) is the Gaussian
filter. We expect that the dynamic section contains as many parts as possible
where the video-text correlation significantly increases. Therefore, we calculate
the difference in similarity Ŝ: Di = Ŝi − Ŝi−1. Given a proposal starts from
the i-th frame and ends with the k-th frame, we require that all the differential
values within the proposal exceed a certain threshold δ. If this condition is met,
we sum up the differential values in the proposal to obtain the dynamic score
for that proposal:

Sdynamic
i,k =


k∑

l=i

Dl, Dl > δ, ∀l ∈ [i, k]

0, otherwise

(2)

Static Scoring Inspired by SPL [59], in the static part, we require that the
most relevant event for a given query should satisfy the requirement that videos
within the event have high relevance to the query and videos outside the event
have low relevance to the query. Therefore, given a proposal starts from the
k-th frame and ends with the j-th frame, we calculate the average similarity
within the proposal and the average similarity outside the proposal, and use the
difference between them as the static scores:

Sstatic
k,j =

1

j − k

∑
l∈[k,j]

Sl −
1

N − (j − k)

∑
l/∈[k,j]

Sl (3)

where N is the number of frames.
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To localize the target video clip using dynamic and static scoring, we enu-
merate event proposals in the video. For each proposal (i, j), due to the varying
lengths of transition segments in different events, we enumerate all feasible times-
tamps k where the transition just finished and divide the proposal into two parts:
the dynamic part (i, k) and static part (k, j). We then calculate the sum of the
dynamic score and static score, and select the maximum value as the score for
this proposal:

Sfinal
i,j =

j
max
k=i

(Sdynamic
i,k + Sstatic

k,j ) (4)

Finally, we select the top-k proposal with the highest final score Sfinal as the
localization results of the VLM localizer.

3.3 Prediction Filtering and Integration

The VLM locator returns the top-k predictions for each sub-event description.
To obtain the final prediction, we propose to filter and integrate these predictions
from the VLP localizer based on the order of occurrence of sub-events and their
relationships derived from LLM. Firstly, for each sub-event, we enumerate one of
its top-k predictions, and there are total km combinations, where m is the number
of sub-events. For a combination P1, P2, ..., Pm, we filter these combinations by
the order constraint: if LLM determines that Pi from si to ei should occur
before Pj from sj to ej , but the start time of Pi is later than the end time of
Pj (i.e. si > ej), then this combination will be discarded. After filtering, we
can calculate the sum of scores Sfinal returned by the VLM localizer for each
combination, selecting the combination with the highest score, and merging these
proposals based on the relation constraint: If LLM determines that these sub-
events should occur simultaneously, we take the intersection of these proposals
as the final prediction; otherwise, we take the union of these proposals as the
final prediction:

P final =

{
P1 ∩ P2 ∩ ... ∩ Pm, relation is ‘simultaneously’
P1 ∪ P2 ∪ ... ∪ Pm, relation is ‘sequentially’

(5)

4 Experiments

To comprehensively validate the effectiveness of our method, we conduct ex-
periments on the Charades-STA [7] and ActivityNet Captions [16] datasets. We
compare our method with existing methods under the IID, OOD, and cross-
dataset settings respectively to demonstrate the generalization capability of our
method. We also conduct ablation studies to evaluate the effectiveness of each
module.

4.1 Experimental Setup

Dataset: We conduct experiment on two benchmark ActivityNet Captions [16]
and Charades-STA [7]. ActivityNet Captions contains 20K videos, which is origi-
nally collected for video captioning. There are 37,417/17,505/17,031 video-query
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pairs in the train /val_1/val_2 split. We follow previous works [28, 44] and re-
port the performance on the val_2 split. Charades-STA is built based on the
Charades dataset. There are 12,408/3,720 video-query pairs in the train/test
split. We report the performance on the test split.
Evaluation Metrics: We follow the evaluation metrics ‘R@m’ and ‘mIoU’ in
the previous work [28,44], where m is the predefined temporal Intersection over
Union (IoU) threshold. The metric ‘R@m’ represents the percentage of predic-
tions that have the IoU larger than m. The metric ‘mIoU’ represents the average
IoU of all the predictions.
Implementation Details: We follow [22, 55] to use the BLIP-2 Q-former [20]
as the vision-language model. For the large language model, we use the GPT-4
Turbo API. For the VLM localizer, we downsample the input video to 3 FPS
and use VLM to calculate the similarity between video frames and text. The
localizer returns k = 3 predictions for each sub-event. For the hyperparameter,
we set δ to 5× 10−4 across all the datasets.

4.2 Comparison with the SOTAs

Comparison under the IID setting. In Table 1, we compare the perfor-
mance of our method with existing methods under the IID setting. We use the
official splits of Charades-STA and ActivityNet Captions. It can be observed
that our method achieves the best performance in the zero-shot setting. For ex-
ample, on the Charades-STA dataset, our method surpasses the second-ranked
VTG-GPT [46] by 6.29% on the R@0.5 metric. Our method also outperforms
unsupervised training methods by 9.27% on the R@0.5 metric on the Charades-
STA dataset. The methods that utilize both LLM and VLM, such as VideoL-
LaMA [55] which aligns visual features to the input token space of LLM, have a
poor performance on video temporal grounding. Although VTimeLLM [10] and
GroundingGPT [24] further finetune LLM using data from ActivityNet-Captions
or Charades-STA, the performance remains suboptimal. Our method combines
the advantages of LLM in text understanding and reasoning with the advantages
of VLM in visual-text alignment, resulting in superior performance.

Comparison under the OOD setting. To study the generalization ca-
pability of our method, we conducted experiments under OOD settings. We
consider three OOD settings: novel location, novel text, and cross-dataset.

For the novel location, we follow DCM [50] by inserting a segment of random-
generated video at the beginning of test videos, as shown in Table 2. In Table 3,
we also test the performance on the Charades-CD [53] dataset, which alters the
distribution of target location by resplitting the training and test data. As we
can see, our method outperforms recent fully supervised methods in this setting
without training, proving its superior generalization capability.

For the novel text, we follow VISA [19] and test on the Charades-CG [19]
dataset as shown in Table 3. ‘Novel-composition’ indicates the text contains novel
combinations of training vocabulary, while ‘novel-word’ indicates the text con-
tains novel words. Our method achieves the best performance under the novel-
word setting. Under the novel-composition setting, although not as competitive
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Method Setting VLM LLM Charades-STA ActivityNet Captions
R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

2D-TAN [57]

fully % %

- 39.81 23.25 - 58.75 44.05 27.38 -
EMB [11] 72.50 58.33 39.25 53.09 64.13 44.81 26.07 45.59

MGSL-Net [25] - 63.98 41.03 - - 51.87 31.42 -
EaTR [14] - 68.47 44.92 - - 58.18 37.64 -
CRM [12]

weakly % %

53.66 34.76 16.37 - 55.26 32.19 - -
CNM [60] 60.39 35.43 15.45 - 55.68 33.33 - -
CPL [61] 66.40 49.24 22.39 - 55.73 31.37 - -

Huang et al. [13] 69.16 52.18 23.94 45.20 58.07 36.91 - 41.02
Gao et al. [8]

unsup. 5 ! %

46.69 20.14 8.27 - 46.15 26.38 11.64 -
PSVL [33] 46.47 31.29 14.17 31.24 44.74 30.08 14.74 29.62

PZVMR [39] 46.83 33.21 18.51 32.62 45.73 31.26 17.84 30.35
Kim et al. [15] 52.95 37.24 19.33 36.05 47.61 32.59 15.42 31.85

SPL [59] 60.73 40.70 19.62 40.47 50.24 27.24 15.03 35.44
GroundingGPT [24] fully 6 ! !

- 29.6 11.9 - - - - -
VTimeLLM-13B [10] 55.3 34.3 14.7 34.6 44.8 29.5 14.2 31.4

VideoChat-7B [22]

zero-shot

! ! 9.0 3.3 1.3 6.5 8.8 3.7 1.5 7.2
VideoLLaMA-7B [55] ! ! 10.4 3.8 0.9 7.1 6.9 2.1 0.8 6.5

VideoChatGPT-7B [30] ! ! 20.0 7.7 1.7 13.7 26.4 13.6 6.1 18.9
Luo et al. [28] ! % 56.77 42.93 20.13 37.92 48.28 27.90 11.57 32.37
VTG-GPT [46] ! ! 59.48 43.68 25.94 39.81 47.13 28.25 12.84 30.49
Ours w/o LLM ! % 65.46 48.01 22.07 43.37 48.84 26.64 13.10 33.61

Ours ! ! 67.04 49.97 24.32 44.51 49.34 27.02 13.39 34.10

Table 1: Evaluation Results on the Charades-STA and ActivityNet Captions Datasets.

as methods specifically designed for this scenario, such as DeCo and VISA, our
method still outperforms other fully supervised approaches.

For the cross-dataset setting, we follow Debias-TLL [3] where the models are
trained on ActivityNet Captions and tested on the Charades-STA, as shown in
Table 4. Notably, almost all fully supervised methods experience significant per-
formance degradation when applied across datasets, while our method remains
unaffected as it does not rely on training data distribution. These experiments
demonstrate that our method has superior generalization capabilities, making it
more suitable for practical application requirements.

4.3 Ablation Studies

To validate the effectiveness of each module, we conduct ablation studies on the
Charades-STA dataset.

Effectiviness of each component. Table 5 shows the ablation studies on
the effectiveness of the proposed modules. When disenabling the VLM localizer,
we use the naive baseline. When disenabling Filtering&Integration, we simply
take the top-1 predictions of the localizer for each sub-event and consider their
union box as the final prediction. (1) From the 2nd row of the table, it can be
5 Some of them claim to be under the zero-shot setting. However, they still require

video data for training. We follow [28] to classify them as unsupervised methods.
6 They use the data in the ActivityNet Captions or Charades-STA to finetune LLMs.
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Method Setting
Charades-STA ActivityNet-Captions

OOD-1 OOD-2 OOD-1 OOD-2
R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

LGI [32]

fully

42.1 18.6 41.2 35.8 13.5 37.1 16.3 6.2 22.2 11.0 3.9 17.3
2D-TAN [57] 27.1 13.1 25.7 21.1 8.8 22.5 16.4 6.6 23.2 11.5 3.9 19.4
MMN [44] 31.6 13.4 33.4 27.0 9.3 30.3 20.3 7.1 26.2 14.1 5.2 20.6
VDI [27] 25.9 11.9 26.7 20.8 8.7 22.0 20.9 7.1 27.6 14.3 5.2 23.7
DCM [50] 44.4 19.7 42.3 38.5 15.4 39.0 18.2 7.9 24.4 12.9 4.8 20.7
CNM [60] weakly 9.9 1.7 21.6 6.1 0.5 16.6 6.1 0.4 21.0 2.5 0.1 16.8
CPL [61] 29.9 8.5 32.2 24.9 6.3 30.5 4.7 0.4 21.1 2.1 0.2 17.7
PSVL [33] unsup. 3.0 0.7 8.2 2.2 0.4 6.8 - - - - - -

PZVMR [39] - 8.6 25.1 - 6.5 28.5 - 4.4 28.3 - 2.6 19.1
Luo et al. [28] zero-shot 40.3 18.2 38.2 38.9 17.0 37.8 18.4 6.8 21.1 18.6 7.4 20.6

Ours 45.9 20.8 43.0 43.8 20.0 42.6 20.4 11.2 31.7 18.5 10.0 30.3

Table 2: Results under OOD setting on the Charades and ActivityNet Dataset.

Method Setting
Charades-CD Charades-CG

test-ood novel-composition novel-word
R@0.3 R@0.5 R@0.7 R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

2D-TAN [57]

fully

43.45 30.77 11.75 30.91 12.23 29.75 29.36 13.21 28.47
TSP-PRL [45] 31.93 19.37 6.20 16.30 2.04 13.52 14.83 2.61 14.03

SCDM [54] 52.38 41.60 22.22 27.73 12.25 30.84 - - -
VISA [19] - - - 45.41 22.71 42.03 42.35 20.88 40.18
DeCo [49] - - - 47.39 21.06 40.70 - - -

WSSL [6] weakly 35.86 23.67 8.27 3.61 1.21 8.26 2.79 0.73 7.92
CPL [61] - - - 39.11 15.60 35.53 45.90 22.88 -

SPL [59] unsup. 62.96 38.25 15.53 - - - - - -

Luo et al. [28] zero-shot - - - 40.27 16.27 - 45.04 21.44 -
Ours 65.07 49.24 23.05 43.84 18.68 40.19 56.26 28.49 46.90

Table 3: Results under OOD setting on the Charades-CD and Charades-CG Dataset.

observed that using LLM alone without Filtering&Integration may hurt some
metrics. This is because the descriptions of sub-events usually only capture a part
of the semantics of the original query, and the localizing results are inaccurate
without Filtering&Integration. (2) From the 3rd row of the table, it can be seen
that when both LLM prompting and Filtering&Integration are used, the model
outperforms the naive baseline by 1.46% in mIoU. (3) From the 4th row of the
table, our proposed VLM localizer shows a significant performance improvement,
with a 5.69% increase in R@0.5 compared to the naive baseline. (4) In the
6th row, when all three modules are enabled, performance is further improved,
demonstrating the effectiveness of our method.

Effectiviness of VLM. Table 6 shows the effectiveness of our two scoring
functions in the VLM Localizer. (1) From the second row of the table, it can
be observed that the dynamic scoring significantly improves performance, with
an increase of 10.07% in mIoU. Since most VLMs are trained on image-text
or trimmed video clip-text data, they are not sensitive enough to the dynamic
transitions between different events in the same video. Dynamic scoring mod-
els the dynamic transitions implicitly, thus demonstrating better performance.
(2) From the third row of the table, when using static scoring, the mIoU of
the naive baseline improves by 10.2%. Static scoring compared with the naive
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Method R@1 R@1 R@5 R@5
R@0.5 R@0.7 R@0.5 R@0.7

SCDM [54] 15.91 6.19 54.04 30.39
2D-TAN [57] 15.81 6.30 59.06 31.53

Debias-TLL [3] 21.45 10.38 62.34 32.90
Ours 49.97 24.32 83.5 42.2

Table 4: Cross-dataset performance
when training on ActivityNet captions
and evaluate on Charades-STA.

LLM
prompting

VLM
localizer

Filtering &
Integration R@0.5 R@0.7 mIoU

1 % % % 42.32 18.91 31.61

2 ! 43.17 18.56 32.14
3 ! ! 44.12 19.21 33.07
4 ! 48.01 22.07 43.37
5 ! ! 48.41 21.94 42.76

6 ! ! ! 49.97 24.32 44.51

Table 5: Ablations on each component.

Dynamic
Scoring

Static
Scoring R@0.5 R@0.7 mIoU

% % 42.32 18.91 31.61

! 47.63 20.13 41.68
! 45.48 22.02 41.81

! ! 48.01 22.07 43.37

Table 6: Ablations on VLM localizer.

Order
Constraint

Relation
Constraint R@0.5 R@0.7 mIoU

% % 42.32 18.91 31.61

! 43.01 19.03 31.73
! 43.97 19.11 32.76

! ! 44.12 19.21 33.07

Table 7: Ablations on LLM prompting.

baseline not only requires high visual-textual relevance within the event but
also requires low visual-textual relevance outside the event, thereby avoiding the
model’s focus solely on the most discriminative video segments. Combining both
approaches further enhances model performance, demonstrating the effectiveness
of our VLM localizer.

In Table 8, we report the performance of different VLMs, including the image-
text pre-trained model (CLIP [34] and BLIP-2 [20]) and video-text pre-trained
model (InterVideo [43], ViCLIP [42]). It can be observed that BLIP-2 exhibits
the best performance, even surpassing models trained on video-text data. We
attribute this to the fact that the pretraining data for image-text is much larger
than that for video-text (e.g. LAION400M [35] v.s. WebVid10M [2]), thus BLIP-
2 demonstrates better generalization capability. Additionally, our designed dy-
namic scoring helps BLIP-2 better understand the dynamic transition in the
videos. Notably, in Table 1, VideoLLaMA [55] and VideoChat [22] utilize the
frozen BLIP-2 Q-Former. VTG-GPT employs MiniGPT [64], which is also based
on the frozen BLIP-2. Therefore, our comparison with them is fair. Addition-
ally, Luo et al. [28] use InterVideo as the VLM, and as shown in Table 8, our
performance using InterVideo still surpasses them.

VLMs Type R@0.5 R@0.7 mIoU

CLIP [34] Image 42.68 18.92 38.89
BLIP-2 [20] 48.01 22.07 43.37

InterVideo [43] Video 44.60 20.51 40.72
ViCLIP [42] 44.01 20.48 40.25

Table 8: Ablations on the VLMs.

LLMs R@0.5 R@0.7 mIoU

None 48.01 22.07 43.37
Gemini-1.0-Pro [36] 48.97 22.76 44.12

GPT-3.5 Turbo 49.23 23.11 44.69
GPT-4 Turbo 49.97 24.32 44.51

Table 9: Ablations on the LLMs.
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Effectiviness of LLM. (1) We utilize the order and relationships of sub-
events provided by LLM to filter and integrate the predictions of the VLM
localizer. Table 7 verifies the effectiveness of Filtering&Integration. It can be
observed that both order and relation constraints improve the performance, with
the most significant improvement when both are used simultaneously. (2) In
Table 9, we also report the performance of different LLMs, including Gemini-
1.0-Pro, GPT-3.5 Turbo, and GPT-4 Turbo. The results indicate that more
powerful LLM (e.g. GPT-4) can lead to better performance.

Reasoning: The user described a boy 
performing tricks on a balance rope in a 
competition in a snowy path while people 
watched him behind a fence. This description 
contains two simple actions: 1) the boy 
performing tricks on a balance rope in a 
competition, and 2) people watching him 
behind the fence. The boy's action and the 
spectators' action can occur simultaneously.
Sub-events by time order:
1. A boy is doing tricks on a balance rope in a 
competition. 
2. People are watching him behind a fence.
Relationship: simultaneously

Query: the boy is in a competition in snowy path doing tricks on a balance rope with people behind a fence watching him.

Ground truth: 145.65s 215.78s

Prediction:

Sub-query: A boy is doing tricks on a balance rope in a competition.
0.0s

220.4s
Sub-query: People are watching him behind a fence.

138.23s

197.24s

197.24s138.23s

LLM

Fig. 3: Qualitative results on the ActivityNet Captions dataset.

4.4 Qualitative Results

Figure 3 presents a visualization. It can be seen that the LLM successfully splits
the query into two sub-events and analyzes that both of these sub-events should
occur simultaneously in the target query. Our VLM localizer successfully local-
izes these two sub-events, and their intersection forms the final prediction. More
qualitative results can be found in the supplementary materials.

5 Conclusion

In this work, we study the problem of training-free video temporal grounding.
We leverage the ability of LLM and VLM, requiring no specific video temporal
localization dataset. We propose leveraging LLM to analyze multiple sub-events
contained in the query and analyze the temporal order and relationships be-
tween these events. Then, we explicitly model the dynamic transition and static
status in the video and use the VLM to localize the sub-events and leverage
the order and relationships provided by LLMs to integrate the predictions. Our
method achieves the best performance on zero-shot video temporal grounding
on Charades-STA and ActivityNet Captions datasets without any training and
demonstrates better generalization in cross-dataset and OOD settings.

Limitations. LLM are not always reliable in reasoning the order and re-
lationships between sub-events, which can negatively impact the performance.
How to validate the reliability of outputs from LLM can be studied in the future.
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