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Introduction

Query: The person takes two glasses from the cabinet.
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Query: person take a timed picture.
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Goal: Automatically detecting the video segments semantically relevant to the

language description from untrimmed video, without temporal boundary

annotation.

Drawbacks of existing methods

(1) Negative samples from other videos

(2) Data-independent proposal generation procedure

Advantages of our method

(1) Higher quality proposals

(2) Stronger ability to distinguish confusing scenes

Method Overview
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Mask Generator

Aim: Generate high-quality content-based proposals

Feature Extraction

Word embedding: Glove

Video encoder: CLIP or I3D

Mask Generation

(1) Obtain fused feature H
(2) Predict Gaussian center c and width w through hN in H
The positive Gaussian mask mp:

m
p
i = exp(−α(i/N − c)2

w2 ), i = 1, ..., N

Negative Sample Mining

Aim: Enable our model to distinguish highly confusing scenes

(1) Easy negatives: Frames suppressed by mp

(2) Hard negatives: The entire video

Mask Conditioned Reconstructor

Aim: Reconstruct query conditioned on arbitrary sample masks

Mask Conditioned Attention

Aggregated context information:

Em(V, m) = Softmax(A ⊗ m)Va ∈ RN×DH

Mask Conditioned Semantic Completion

Aim: Segments highlighted by positive mask reconstruct the query better

(1) Mask words in query

(2) Reconstruct the original query

(3) Calculate the difference between probability and real distribution with cross-

entropy loss

(4)The final reconstruction loss Lrec:

Lrec = Lp
ce + Lh

ce

where Lp
ce and Lh

ce means the cross-entropy loss mentioned above conditioned on

mp and mh.

Intra-Video Contrastive

Intra-Video Contrastive loss LIV C :

LIV C =max(Lp
ce − Lh

ce + β1, 0)+ max(Lp
ce − Le

ce + β2, 0)

Experiments

Table 1. ActivityNet Captions

Method
Recall

IoU=0.1 IoU=0.3 IoU=0.5

Random 38.23 18.64 7.63

WS-DEC 62.71 41.98 23.34

EC-SL 68.48 44.29 24.16

MARN - 47.01 29.95

SCN 71.48 47.23 29.22

RTBPN 73.73 49.77 29.63

WSLLN 75.4 42.8 22.7

LCNet 78.58 48.49 26.33

WSTAN 79.78 52.45 30.01

CRM 81.61 55.26 32.19

CNM (ours) 78.13 55.68 33.33

Table 2. Charades-STA

Method
Recall

IoU=0.3 IoU=0.5 IoU=0.7

Random 20.12 8.61 3.39

TGA 32.14 19.94 8.84

WSTG 39.8 27.3 12.9

SCN 42.96 23.58 9.97

WSTAN 43.39 29.35 12.28

VLANet 45.24 31.83 14.17

LoGAN 48.04 31.74 13.71

MARN 48.55 31.94 14.81

CRM 53.66 34.76 16.37

LCNet 59.60 39.19 18.87

RTBPN 60.04 32.36 13.24

CNM (ours) 60.39 35.43 15.45

Ablation Studies

(1) Effect of components

Table 3. Mask Generator

Method
Recall

IoU=0.1 IoU=0.3 IoU=0.5 mIoU

Full Model 78.13 55.68 33.33 37.14

w/o. Mask 79.35 47.71 26.98 34.73

Table 4. Intra-Video Negative Sample Mining

Hard Easy
Recall

IoU=0.1 IoU=0.3 IoU=0.5 mIoU

! ! 78.13 55.68 33.33 37.14

% ! 80.60 55.67 31.40 36.79

! % 80.99 55.19 30.94 36.95

% % 62.27 40.26 24.93 28.55

(2) Effect of Training Strategy

Table 5. Training Strategy

Method
Recall

IoU=0.1 IoU=0.3 IoU=0.5 mIoU

minθ1 LIV C + minθ2 Lrec 78.13 55.68 33.33 37.14

minθ1,θ2(LIV C + Lrec) 63.59 43.80 24.50 28.96

Qualitative Examples on ActivityNet Captions

Query: She laughs and continues to brush her teeth.

Query: He blows into the harmonica and starts to play it.
(a)

(b)
Query: Once complete, she jumps up and down, happy that her 
jump was successful as the crowd begins to cheer for her.

(c)

GT15.18s 70.59s
SCN2.12s 63.88s

Ours16.59s 70.59s

GT37.37s 162.22s
SCN18.66s 160.60s

Ours37.31s 162.22s

GT15.57s 16.93s
SCN0.00s 14.81s

Ours3.72s 16.93s

Conclusion

Generate Gaussian mask as the positive sample

Mine the hard and easy negative samples within the same video

Experiments and ablation studies demonstrate our advantages
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